Home » Minerals » Olivine Rain

Olivine Rain on Protostar HOPS-68

Spitzer Space Telescope detects a rain of tiny green crystals of olivine

Republished from NASA press release.

Descending Olivine Crystals

Tiny crystals of a green mineral called olivine are falling down like rain on a burgeoning star, according to observations from NASA's Spitzer Space Telescope.

This is the first time such crystals have been observed in the dusty clouds of gas that collapse around forming stars. Astronomers are still debating how the crystals got there, but the most likely culprits are jets of gas blasting away from the embryonic star.

Temperatures as Hot as Lava

"You need temperatures as hot as lava to make these crystals," said Tom Megeath of the University of Toledo in Ohio. He is the principal investigator of the research and the second author of a new study appearing in Astrophysical Journal Letters. "We propose that the crystals were cooked up near the surface of the forming star, then carried up into the surrounding cloud where temperatures are much colder, and ultimately fell down again like glitter."

Spitzer's infrared detectors spotted the crystal rain around a distant, sun-like embryonic star, or protostar, referred to as HOPS-68, in the constellation Orion.

Forsterite Crystals

The crystals are in the form of forsterite. They belong to the olivine family of silicate minerals and can be found everywhere from a peridot gemstone to the green sand beaches of Hawaii to remote galaxies. NASA's Stardust and Deep Impact missions both detected the crystals in their close-up studies of comets.

"If you could somehow transport yourself inside this protostar's collapsing gas cloud, it would be very dark," said Charles Poteet, lead author of the new study, also from the University of Toledo. "But the tiny crystals might catch whatever light is present, resulting in a green sparkle against a black, dusty backdrop."

Forsterite crystals were spotted before in the swirling, planet-forming disks that surround young stars. The discovery of the crystals in the outer collapsing cloud of a proto-star is surprising because of the cloud's colder temperatures, about minus 280 degrees Fahrenheit (minus 170 degrees Celsius). This led the team of astronomers to speculate the jets may in fact be transporting the cooked-up crystals to the chilly outer cloud.

The findings might also explain why comets, which form in the frigid outskirts of our solar system, contain the same type of crystals. Comets are born in regions where water is frozen, much colder than the searing temperatures needed to form the crystals, approximately 1,300 degrees Fahrenheit (700 degrees Celsius). The leading theory on how comets acquired the crystals is that materials in our young solar system mingled together in a planet-forming disk. In this scenario, materials that formed near the sun, such as the crystals, eventually migrated out to the outer, cooler regions of the solar system.

Jets Transport Crystals Through Solar Systems

Poteet and his colleagues say this scenario could still be true but speculate that jets might have lifted crystals into the collapsing cloud of gas surrounding our early sun before raining onto the outer regions of our forming solar system. Eventually, the crystals would have been frozen into comets. The Herschel Space Observatory, a European Space Agency-led mission with important NASA contributions, also participated in the study by characterizing the forming star.

The Value of Infrared Telescopes

"Infrared telescopes such as Spitzer and now Herschel are providing an exciting picture of how all the ingredients of the cosmic stew that makes planetary systems are blended together," said Bill Danchi, senior astrophysicist and program scientist at NASA Headquarters in Washington.

The Spitzer observations were made before it used up its liquid coolant in May 2009 and began its warm mission.

More About the Spitzer Space Telescope

NASA's Jet Propulsion Laboratory in Pasadena, Calif., manages the Spitzer Space Telescope mission for the agency's Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA. Visit the Spitzer website at and

Teaching Plate Tectonics with Drawings
San Andreas Fault
Mount Rainier Volcanic Hazards
What is Geology?
Types of Volcanic Eruptions
East Africa Rift
Marcellus Shale

Olivine rain
An artist's concept of crystalline olivine rain on a developing star, inspired by the Spitzer Space Telescope. Image by NASA/JPL Caltech/University of Toledo.

olivine crystals
An artist's concept of how the olivine crystals are suspected to have been transported into the outer cloud around the developing star, or protostar. Jets shooting away from the protostar, where temperatures are hot enough to cook the crystals, are thought to have transported them to the outer cloud, where temperatures are much colder. Astronomers say the crystals rain back down onto the swirling disk of planet-forming dust circling the star. Image by NASA/JPL Caltech/University of Toledo.

olivine star
An infrared light image produced by NASA's Spitzer Space Telescope. An arrow points to the embryonic star, named HOPS-68, where the olivine rain is thought to occur. Image by NASA/JPL Caltech/University of Toledo.

Find it on

More from

Fee Mining
Fee Mining sites are mines that you can enter, pay a fee, and keep anything that you find.
gem photos
100+ Gems - Photos of over 100 beautiful gems ranging from the popular to the obscure.
Petrified Wood
Petrified Wood is a fossil that forms when dissolved material precipitates and replaces wood.
Ammolite is a fossil and a gemstone. It is shell material from fossil ammonites.
Kyanite is a metamorphic mineral that sometimes has a gemmy transparent blue color.
Wrong Volcano! The most powerful eruption of the 20th century was misidentified?
What are Glaciers? Learn how glaciers form, flow, advance, retreat, and change over time.
Crushed Stone
Crushed Stone - About four tons per person is used each year in the United States.

© 2005-2016 All Rights Reserved.
Images, code, and content on this website are property of and are protected by copyright law. does not grant permission for any use, republication, or redistribution.
Images, code and content owned by others are marked on the pages where they appear.