geologyMcAfee SECURE sites help keep you safe from identity theft, credit card fraud, spyware, spam, viruses and online scams

Home » Oceanography » Exploring the deepest part of the ocean

The Abyss: Deepest Part of the Oceans No Longer Hidden


A June, 2009 press release of the National Science Foundation.


World-Record Dive to 10,902 Meters



The Abyss is a dark, deep place, but it's no longer hidden. At least when Nereus is on the scene. Nereus is a new type of deep-sea robotic vehicle, called a hybrid remotely operated vehicle (HROV).

Nereus dove to 10,902 meters (6.8 miles) on May 31, 2009, in the Challenger Deep in the Mariana Trench in the western Pacific Ocean, reports a team of engineers and scientists aboard the research vessel Kilo Moana.

The dive makes Nereus the world's deepest-diving vehicle, and the first vehicle to explore the Mariana Trench since 1998.

"Much of the ocean's depths remain unexplored," said Julie Morris, director of the National Science Foundation (NSF)'s Division of Ocean Sciences, which funded the project. "Ocean scientists now have a unique tool to gather images, data and samples from everywhere in the oceans, rather than those parts shallower than 6,500 meters (4 miles). With its innovative technology, Nereus allows us to study and understand previously inaccessible ocean regions." Nereus's unique hybrid-vehicle design makes it ideally suited to explore the ocean's last frontiers, marine scientists say. The unmanned vehicle is remotely operated by pilots aboard a surface ship via a lightweight, micro-thin, fiber-optic tether that allows Nereus to dive deep and be highly maneuverable. Nereus, however, can also be switched into a free-swimming, autonomous vehicle mode.


The Challenges of Ultra-Deep Exploration



"Reaching such extreme depths is the pinnacle of technical challenges," said Andy Bowen, project manager and principal developer of Nereus at the Woods Hole Oceanographic Institution (WHOI). "The team is pleased that Nereus has been successful in reaching the very bottom of the ocean to return imagery and samples from such a hostile world. With a robot like Nereus we can now explore anywhere in the ocean. The trenches are virtually unexplored, and Nereus will enable new discoveries there. Nereus marks the start of a new era in ocean exploration."

Nereus (rhymes with "serious") is a mythical Greek god with a fish-tail and a man's torso. The vehicle was named in a nationwide contest open to high school and college students.


Tectonics of the Mariana Trench



The Mariana Trench forms the boundary between two tectonic plates, where the Pacific Plate subducts beneath the Mariana Plate. It is part of the Pacific Ring of Fire, a 40,000-kilometer (25,000-mile) area where most of the world's volcanic eruptions and earthquakes occur. At 11,000 meters, its depth is about the height a commercial airliner flies.

To reach the trench, Nereus dove nearly twice as deep as research submarines are capable of, and had to withstand pressures 1,000 times that at Earth's surface--crushing forces similar to those on the surface of Venus, according to Dana Yoerger of WHOI and Louis Whitcomb of Johns Hopkins University, who developed the vehicle's navigation and control system and conducted successively deeper dives to test Nereus.

"We couldn't be prouder of the stunning accomplishments of this dedicated and talented team," said Susan Avery, president and director of WHOI. "With this engineering trial successfully behind us, we're eager for Nereus to become widely used to explore the most inaccessible reaches of the ocean. With no part of the deep seafloor beyond our reach, it's exciting to think of the discoveries that await."


Nereus Joins Trieste and Kaiko in History



Only two other vehicles have succeeded in reaching the Mariana Trench: the U.S. Navy-built bathyscaphe Trieste, which carried Jacques Piccard and Don Walsh there in 1960, and the Japanese-built robot Kaiko, which made three unmanned expeditions to the trench between 1995 and 1998.

Trieste was retired in 1966 and Kaiko was lost at sea in 2003.

The Nereus engineering team believed that a tethered robot using traditional technologies would be prohibitively expensive to build and operate. So they used unique technologies and innovative methods to strike a balance between size, weight, materials cost and functionality.

Building on previous experience developing tethered robots and autonomous underwater vehicles (AUVs), the team fused the two approaches together to develop a hybrid vehicle that could fly like an aircraft to survey and map broad areas, then be converted quickly into a remotely operated vehicle (ROV) that can hover like a helicopter near the seafloor to conduct experiments or to collect biological or rock samples.


Fiber-Optic Technology for Communication



The tethering system presented one of the greatest challenges in developing a cost-effective ROV capable of reaching these depths. Traditional robotic systems use a steel-reinforced cable made of copper to power the vehicle, and optical fibers to enable information to be passed between the ship and the vehicle. If such a cable were used to reach the Mariana Trench, it would snap under its own weight before it reached that depth.

To solve this challenge, the Nereus team adapted fiber-optic technology developed by the Navy's Space and Naval Warfare Systems Center Pacific to carry real-time video and other data between the Nereus and the surface crew. Similar in diameter to a human hair and with a breaking strength of only eight pounds, the tether is composed of glass fiber with a very thin protective jacket of plastic.

Nereus brings approximately 40 kilometers (25 miles) of cable in two canisters the size of large coffee cans that spool out the fiber as needed. By using this very slender tether instead of a large cable, the team was able to decrease the size, weight, complexity and cost of the vehicle.


Standing Up to Crushing Pressures



Another weight-saving advance of the vehicle is its use of ceramic spheres for flotation, rather than the much heavier traditional syntactic foam used on vehicles like the submersible Alvin or the ROV Jason.

Each of Nereus's two hulls contains between 700 and 800 of the 9-centimeter (3.5-inch) hollow spheres that are precisely designed and fabricated to withstand crushing pressures.

WHOI engineers also developed a hydraulically operated, lightweight robotic manipulator arm that could operate under intense pressure.


4,000 Lithium-Ion Batteries



With its tandem hull design, Nereus weighs nearly 3 tons in air and is about 4.25 meters (14 feet) long and approximately 2.3 meters (nearly 8 feet) wide. It is powered by more than 4,000 lithium-ion batteries. They are similar to those used in laptop computers and cell phones, but have been carefully tested to be used safely and reliably under the intense pressure of the depths.

"These and future discoveries by Nereus will be the result of its versatility and agility--it's like no other deep submergence vehicle," said Tim Shank, a biologist at WHOI who is aboard the expedition. "It allows vast areas to be explored with great effectiveness. Our true achievement is not just getting to the deepest point in the oceans, but unleashing a capability that now enables deep exploration, unencumbered by a heavy tether and surface ship, to investigate some of the richest geological and biological systems on Earth."

On May 31, the team took the vehicle to 10,902 meters, the deepest dive to date. Testing will continue over the next few days and the team will return to port on June 5. On this initial engineering cruise, Nereus's AUV mode was not tested.

On its dive to the Challenger Deep, Nereus spent more than 10 hours on the bottom, sending live video back to the ship through its fiber-optic tether and collecting biological and geological samples with its manipulator arm, and placed a marker on the seafloor signed by those onboard the surface ship.


Sediment From A Subducting Plate



"The samples collected by the vehicle include sediment from the tectonic plates that meet at the trench and, for the first time, rocks from deep exposures of the Earth's crust close to mantle depths south of the Challenger Deep," said geologist Patty Fryer of the University of Hawaii, also aboard the expedition. We will know the full story once shore-based analyses are completed back in the laboratory this summer. We can integrate them with the new mapping data to tell a story of plate collision in greater detail than ever before accomplished in the world's oceans."

Additional funds for Nereus were provided by the Office of Naval Research, the National Oceanic and Atmospheric Administration, the Russell Family Foundation and WHOI.


Marcellus Shale
What Causes a Tsunami?
The Only Diamond Mine in the USA
Rock Type Photo Gallery
East Africa Rift
Rare Earth Elements
Volcanoes!
Mineral Rights


Nereus hybrid remotely operated vehicle
Nereus, the remotely-operated vehicle is designed to stand-up to the enormous pressures of the deep-sea environment. It collects sediment samples and transmits high-resolution video from world-record dive depths in the darkness of the Mariana Trench. This photo shows Nereus at launch. WHOI image. Enlarge


Where is the Mariana Trench?
Map of the Mariana Trench location
The Mariana Trench is located in the western Pacific Ocean. It was discovered to be 10,924 meters deep in 1951 by researchers aboard the British survey ship Challenger. Nereus is only the third vehicle to explore the trench and holds the record for the deepest dives. Map by Geology.com and MapResources.

Map of the Mariana Trench
The Mariana Trench is located immediately east of the Marianas Island Chain. The Marianas Islands are volcanic cones produced from magma generated by the subduction in the trench. Image by the Council on Environmental Quality

Nereus in action
The hybrid remotely operated vehicle Nereus collects sediment from the bottom of the Mariana Trench. Image by WHOI. Enlarge

Cross-section of the Mariana
The Mariana Trench is the boundary between two tectonic plates: the Pacific Plate and the Mariana Plate. Image by NOAA.



Find it on Geology.com




More from Geology.com


Homeowners Insurance
Homeowners Insurance usually does not cover the most common geologic hazards.
Sliding Rocks
Sliding Rocks Mystery: What causes these rocks to slide across a Death Valley playa?
Gems from Space
Gems from Space A number of materials from space have been used as attractive gems.
Gemstones
Gemstones: Fantastic images and articles about colored stones and diamonds.
Opal
Pictures of Opal: A collection of different types of opal from all around the world and Mars too!
rocks
Rock Gallery: Photos of igneous, sedimentary and metamorphic rocks.
Garnet
Garnet is best known as a red gemstone. It occurs in any color and has many industrial uses.
Fluorescent Minerals
Fluorescent Minerals glow with spectacular colors under ultraviolet light.


© 2005-2014 Geology.com. All Rights Reserved.
Images, code and content of this website are property of Geology.com. Use without permission is prohibited. Pages on this site are protected by Copyscape.