geologyMcAfee SECURE sites help keep you safe from identity theft, credit card fraud, spyware, spam, viruses and online scams

Home » Earthquakes » San Andreas Fault Behavior and Potential Earthquakes

San Andreas Fault Behavior and Potential Earthquakes

Trench observations yield surprising information about earthquake frequency

Republished from a January, 2010 press release by the National Science Foundation.

Stream Channel Offsets at Carrizo Plain

Recent studies of stream channel offsets along the San Andreas Fault reveal new information about fault behavior--changing our understanding of the potential for damaging earthquakes.

The studies were conducted at the Carrizo Plain, 100 miles north of Los Angeles and site of the original "Big One"--the Fort Tejon quake of 1857--by scientists at Arizona State University (ASU) and the University of California at Irvine (UCI).

Applying a systems science approach, the teams reported results of a pair of studies in the journal Science Express on January 21, 2010. The results incorporate the most comprehensive analysis of this part of the San Andreas fault system to date.

Understanding Earthquake Behavior

"These research results challenge the widely accepted characteristic earthquake model and could transform our understanding of fault behavior," said David Fountain, program director in the National Science Foundation (NSF)'s Division of Earth Sciences, which funded the research.

"The results show a substantially reduced estimate of time between large earthquakes on the south-central San Andreas Fault, which implies more frequent smaller earthquakes than previously believed. This in turn has significant implications for earthquake hazards in southern California."

LiDAR Topography to Measure Fault Movement

In one of the studies, ASU geologists Ramon Arrowsmith and Olaf Zielke employed topographic measurements from LiDAR (Light Detection and Ranging), which provided a view of the Earth's surface at a resolution at least 10 times higher than previously available, enabling the scientists to "see" and measure fault movement, or offset.

To study older earthquakes, researchers turned to offset landforms such as stream channels, which cross the fault at a high angle.

The scientists' detailed overhead views of Carrizo Plain stream channels measured the offset features linked to large earthquakes in this section of the southern San Andreas Fault.

"This virtual approach is not a substitute for going out and looking at the features on the ground," says Zielke. "But it is a powerful approach that is repeatable by other scientists."

Determining the Age of Offset Features

A team led by UCI's Lisa Grant Ludwig, Sinan Akciz and Gabriela Noriega determined the age of offset features in Carrizo Plain dry stream channels. They studied how much the fault had slipped during previous earthquakes. The distance a fault "slips," or moves, determines its offset.

By digging trenches across the fault, radiocarbon-dating sediment samples, and studying historic weather data for the Carrizo Plain channels, and combining them with LiDAR data, the researchers found something new.

Rather than seeing the same slip repeat in characteristic ways, they found that the slip varied from earthquake to earthquake.

"When we combine our offset measurements with estimates of the ages of these offset features, and the ages of prior earthquakes, we find that the earthquake offset from event to event in the Carrizo Plain is not constant, as is current thinking," Arrowsmith said.

"The idea of slips repeating in characteristic ways along the San Andreas Fault is very appealing, because if you can figure that out, you are on your way to forecasting earthquakes with some reasonable confidence," added Ludwig.

Rethinking Earthquake Probabilities

"Our results show that we don't understand the San Andreas fault as well as we thought we did," she said. "We therefore don't know the chances of earthquakes as well as we thought."

Before these studies, the magnitude 7.8 Fort Tejon earthquake of 1857 (the most recent earthquake along the southern San Andreas Fault) was thought to have caused a nine-to-ten meter slip along the Carrizo Plain.

But the data the teams acquired show that it was actually half as much, and that slip in some of the prior earthquakes may have been even less.

Reconsidering the Slip of Historic Earthquakes

The researchers also found that none of the past five large earthquakes in the Carrizo Plain dating back 500 years produced slip anywhere near nine meters. The maximum slip seen was about five to six meters, which includes the slip caused by the Fort Tejon quake.

This result changes how we think the San Andreas Fault behaves, the researchers say. It probably is not as segmented in its release of accumulated stress as was thought.

This makes forecasting future earthquakes harder because geologists cannot rely on the assumption of constant behavior for each section.

New Ideas About Earthquake Frequency

It could mean that earthquakes are more common along the San Andreas, but that some of those events may be smaller than previously expected.

Since the 1857 quake, an approximate five meters of strain, or potential slip, has been building up on the San Andreas fault in the Carrizo Plain, ready to be released in a future earthquake.

In the last five earthquakes, the most slip that has been released was five to six meters in the big 1857 quake. This finding points to the potential of a large temblor along the southern San Andreas fault.

"Our collaboration has produced important information about how the San Andreas Fault works," said Arrowsmith. "I am optimistic that these results, which change how we think about how faults work, are moving us to a better understanding of the complexity of the earthquake process."

Haiti and the Value of Earthquake Science

"The recent earthquake in Haiti is a reminder that a destructive earthquake can strike without warning," Ludwig said. "One thing that hasn't changed is the importance of preparedness and earthquake resistant infrastructure in seismically active areas around the globe."

Media Contacts:
Cheryl Dybas, NSF (703) 292-7734
Nikki Staab, Arizona State University (602) 710-7169
Tom Vasich, University of California at Irvine (949) 824-6455

Marcellus Shale
East Africa Rift
San Andreas Fault
What is Geology?
What Causes a Tsunami?
World's Biggest Tsunami

Birdart Fan site
A view looking downstream along the southeast channel of the Birdart Fan site. Note how the trench was dug perpendicular to the stream channel. Images provided by Lisa Grant Ludwig, Ramon Arrowsmith, Sinan Akciz and Olaf Zielke.

Observing the San Andreas Fault below ground
Olaf Zielke and Ramon Arrowsmith at work in the fault trench. Images provided by Lisa Grant Ludwig, Ramon Arrowsmith, Sinan Akciz and Olaf Zielke.

Observations in a San Andreas Fault excavation
Sinan Akciz marks observation points in one of the fault excavations. Images provided by Lisa Grant Ludwig, Ramon Arrowsmith, Sinan Akciz and Olaf Zielke.

Find it on

More from

Wrong Volcano! The most powerful eruption of the 20th century was misidentified?
hurricane names
How Are Hurricanes Named? Names are assigned as tropical storms are discovered.
Download Google Earth Free
Free Google Earth software allows you to browse seamless world satellite images. Free.
Sliding Rocks
Sliding Rocks Mystery: What causes these rocks to slide across a Death Valley playa?
US Diamond Mines
US Diamond Mines: Did you know that diamonds can be found in the United States?
Diamonds: Learn about the properties of diamond, its many uses and diamond discoveries.
Minerals: Information about ore minerals, gem materials and rock-forming minerals.
Fluorescent Minerals
Fluorescent Minerals glow with spectacular colors under ultraviolet light.

© 2005-2014 All Rights Reserved.
Images, code and content of this website are property of Use without permission is prohibited. Pages on this site are protected by Copyscape.