-->
geologyMcAfee SECURE sites help keep you safe from identity theft, credit card fraud, spyware, spam, viruses and online scams

Home » Volcanoes » Volcanic Lightning

Photos of Lightning in the Redoubt Volcano Ash Cloud


Images and discussion submitted by Brentwood Higman of GroundTruthTrekking.org

These photos of lightning in a volcanic ash cloud from Redoubt Volcano were taken by Bretwood Higman. The camera was mounted under the yurt where he lives in Seldovia, Alaska, and was set to automatically take a 30 second photo every two minutes. Seldovia is 80 miles from the volcano, on the far side of Cook Inlet. Two eruptions are captured in the photos, the first at 11:20 pm on March 27, and the second two hours later. The camera, a Canon Digital Rebel XTi with a Canon 70-200mm L lens, was only barely able to resolve the eruption cloud illuminated by the lightning, which is why the images appear noisy.

Redoubt Volcano lightning
Lightning in the ash cloud from the 11:20 PM March 27 eruption at 11:26 PM. Photo by Bretwood Higman.

 Related Pages
 More Volcanoes
 Redoubt Information
For both of these eruptions, the lightning did not begin until several minutes after the explosion began. How lightning forms in general is still debated among scientists, and volcanic lightning is even less well understood. What is mostly agreed upon is that the process starts when particles separate, either after a collision or when a larger particle breaks in two. Then some difference in the aerodynamics of these particles causes the positively charged particles to be systematically separated from the negatively charged particles. Lightning is the electrical flow that results when this charge separation becomes too great for air to resist the flow of electricity. Some of the lighting strokes in these photos are at least 2 miles long, so the separation of charged particles must occur on this scale.

Ash cloud lightning
Lightning in the ash cloud from the 11:20 PM March 27 eruption at 11:28 PM. Photo by Bretwood Higman.

Lightning science
Idealized sequence of events that leads to lightning

1. Starting state (particles might have already been charged by some previous process).

2. Collisions lead to charge separation. For this to happen there has to be some difference in the electrical properties of the particles in the collisions.

3. Some process, such as aerodynamic sorting, segregates the positively and negatively charged particles. This means that there are sections of the cloud that are more negative or positive than other sections.

4. When the charge separation becomes too great, electricity will flow between the positive and negative regions of the cloud forming lightning and neutralizing the charge separation.

Volcanic lightning
Lightning in the ash cloud from the 11:20 PM March 27 eruption at 11:32 PM. Photo by Bretwood Higman.

seismogram
Timing of the eruptions relative to these photos. Image by Alaska Volcano Observatory.



Find it on Geology.com




More from Geology.com


Sunstone: Copper inclusions give this feldspar an aventurescent flash.
Asteroid Impact Map
Asteroid Impact Map: Explore fifty of the most obvious asteroid impact craters on Earth.
Chatoyant Gems
Chatoyant Gems look like the eye of a cat. A line of light moves across the surface of the stone.
Geology News
Geology.com News is updated several times each week. Read it here or receive email updates.
Tallest Waterfall
Tallest Waterfall: Angel Falls in Venezuela. Image Birget Prentner / iStockphoto.
rocks
Rock Gallery: Photos of igneous, sedimentary and metamorphic rocks.
Deepest Lake in the World
Deepest Lake in the World: Lake Baikal in southern Russia is the deepest lake in the World.
Helium
Helium is a byproduct of the natural gas industry. Its most important use is in MRI.



© 2005-2015 Geology.com. All Rights Reserved.
Images, code and content of this website are property of Geology.com. Use without permission is prohibited. Pages on this site are protected by Copyscape.