geologyMcAfee SECURE sites help keep you safe from identity theft, credit card fraud, spyware, spam, viruses and online scams

Home » Plate Tectonics » Plate Tectonics and the Hawaiian Hot Spot

Plate Tectonics and the Hawaiian Hot Spot



Republished from Eruptions of Hawaiian Volcanoes - Past, Present, and Future by Robert. Tilling, Christina Heliker, and Donald. Swanson
U.S. Geological Survey General Information Product 117.


Origin of the Hawaiian Islands



The Hawaiian Islands are the tops of gigantic volcanic mountains formed by countless eruptions of fluid lava over several million years; some tower more than 30,000 feet above the seafloor. These volcanic peaks rising above the ocean surface represent only the tiny, visible part of an immense submarine ridge, the Hawaiian Ridge—Emperor Seamount Chain, composed of more than 80 large volcanoes.

This range stretches across the Pacific Ocean floor from the Hawaiian Islands to the Aleutian Trench. The length of the Hawaiian Ridge segment alone, between the Island of Hawai'i and Midway Island to the northwest, is about 1,600 miles, roughly the distance from Washington, D.C., to Denver, Colorado. The amount of lava erupted to form this huge ridge, about 186,000 cubic miles, is more than enough to cover the State of California with a layer 1 mile thick.


Plate Tectonics and the Hawaiian Hot Spot



In the early 1960s, the related concepts of "seafloor spreading" and "plate tectonics" emerged as powerful new hypotheses that geologists used to interpret the features and movements of the Earth's surface layer. According to the plate tectonic theory, the Earth's rigid outer layer, or "lithosphere," consists of about a dozen slabs or plates, each averaging 50 to 100 miles thick. These plates move relative to one another at average speeds of a few inches per year-about as fast as human fingernails grow. Scientists recognize three common types of boundaries between these moving plates (see diagrams at right):


(1) Divergent Boundaries



Adjacent plates pull apart, such as at the Mid-Atlantic Ridge, which separates the North and South America Pates from the Eurasia and Africa Plates. This pulling apart causes "seafloor spreading" as new material from the underlying less rigid layer, or "asthenosphere," fills the cracks and adds to these oceanic plates.


(2) Convergent Boundaries



Two plates move towards one another and one is dragged down (or "subducted") beneath the other. Convergent plate boundaries are also called "subduction zones" and are typified by the Aleutian Trench, where the Pacific Plate is being subducted under the North America Plate. Mount St. Helens (southwest Washington) and Mount Fui (Japan) are excellent examples of subduction-zone volcanoes formed along convergent plate boundaries.


(3) Transform Boundaries



One plate slides horizontally past another. The best-known example is the earthquake-prone San Andreas Fault Zone of California, which marks the boundary between the Pacific and North America Plates.


Earthquakes and Volcanoes on Plate Boundaries



Nearly all of the world's earthquakes and active volcanoes occur along or near the boundaries of the Earth's shifting plates. Why then are the Hawaiian volcanoes located in the middle of the Pacific Plate, more than 2,000 miles from the nearest boundary with any other tectonic plate? The proponents of plate tectonics at first had no explanation for the occurrence of volcanoes within plate interiors ("intraplate" volcanism).


The "Hot Spot" Hypothesis



Then in 1963, J. Tuzo Wilson, a Canadian geophysicist, provided an ingenious explanation within the framework of plate tectonics by proposing the "hot spot" hypothesis. Wilson's hypothesis has come to be accepted widely, because it agrees well with much of the scientific data on linear volcanic island chains in the Pacific Ocean in general-and the Hawaiian Islands in particular.


How Deep Are Hot Spots?



According to Wilson, the distinctive linear shape of the Hawaiian-Emperor Chain reflects the progressive movement of the Pacific Plate over a "deep" and "fixed" hot spot. In recent years, scientists have been debating about the actual depth(s) of the Hawaiian and other Earth hot spots. Do they extend only a few hundred miles beneath the lithosphere? Or do they extend down thousands of miles, perhaps to Earth's core-mantle boundary?


Do Hot Spots Move?



Also, while scientists general agree that hot spots are fixed in position relative to the faster moving overriding plates, some recent studies have shown that hot spots can migrate slowly over geologic time. In any case, the Hawaiian hot spot partly melts the region just below the overriding Pacific Plate, producing small, isolated blobs of molten rock (magma). Less dense than the surrounding solid rock, the magma blobs come together and rise buoyantly through structurally weak zones and ultimately erupt as lava onto the ocean floor to build volcanoes.


The Hawaiian-Emperor Chain



Over a span of about 70 million years, the combined processes of magma formation, eruption, and continuous movement of the Pacific Plate over the stationary hot spot have left the trail of volcanoes across the ocean floor that we now call the Hawaiian-Emperor Chain. A sharp bend in the chain about 2,200 miles northwest of the Island of Hawai'i was previously interpreted as a major change in the direction of plate motion around 43-45 million years ago (Ma), as suggested by the ages of the volcanoes bracketing the bend.

However, recent studies suggest that the northern segment (Emperor Chain) formed as the hot spot moved southward until about 45 Ma, when it became fixed. Thereafter, northwesterly plate movement prevailed, resulting in the formation of the Hawaiian Ridge "downstream" from the hotspot.


Age of the Islands



The Island of Hawai'i is the southeasternmost and youngest island in the chain. The southeasternmost part of the Island of Hawai'i presently overlies the hot spot and still taps the magma source to feed its active volcanoes. The active submarine volcano Lö'ihi, off the Island of Hawai'i's south coast, may mark the beginning of the zone of magma formation at the southeastern edge of the hot spot. With the possible exception of Maui, the other Hawaiian islands have moved northwestward beyond the hot spot-they were successively cut off from the sustaining magma source and are no longer volcanically active.

The progressive northwesterly drift of the islands from their point of origin over the hot spot is well shown by the ages of the principal lava flows on the various Hawaiian Islands from northwest (oldest) to southeast (youngest), given in millions of years: Ni'ihau and Kaua'i, 5.6 to 3.8; O'ahu, 3.4 to 2.2; Moloka'i, 1.8 to 1.3; Maui, 1.3 to 0.8; and Hawai'i, less than 0.7 and still growing.

Even for the Island of Hawai'i alone, the relative ages of its five volcanoes are compatible with the hot-spot theory (see map, page 3). Kohala, at the northwestern corner of the island, is the oldest, having ceased eruptive activity about 120,000 years ago. The second oldest is Mauna Kea, which last erupted about 4,000 years ago; next is Hualälai, which has had only one eruption (1800-1801) in written history. Lastly, both Mauna Loa and Kïlauea have been vigorously and repeatedly active in the past two centuries. Because it is growing on the southeastern flank of Mauna Loa, Kïlauea is believed to be younger than its huge neighbor.

The size of the Hawaiian hot spot is not well known, but it presumably is large enough to encompass and feed the currently active volcanoes of Mauna Loa, Kïlauea, Lö'ihi and, possibly, also Hualälai and Haleakalä. Some scientists have estimated the Hawaiian hot spot to be about 200 miles across, with much narrower vertical passageways that feed magma to the individual volcanoes.



Find it on Geology.com




More from Geology.com


gem photos
100+ Gems - Photos of over 100 beautiful gems ranging from the popular to the obscure.
Blood Diamonds
Blood Diamonds are illegally-traded diamonds that are often used to fund conflict.
Tallest Mountain
Tallest Mountain: Everest has rivals in tallness, altitude and distance to the center of Earth.
Meteorites
Meteorites - Rocks that were once parts of planets or large asteroids.
Astronomy
Astronomy: Fantastic images and articles about solar system and deep-space astronomy.
Asteroid Impact Map
Asteroid Impact Map: Explore fifty of the most obvious asteroid impact craters on Earth.
Canadian Diamonds
Canadian Diamond Mines produce some of the largest and highest quality gems!
US Diamond Mines
US Diamond Mines: Did you know that diamonds can be found in the United States?


Pacific Basin Map
Map of the Pacific Basin showing the location of the Hawaiian Ridge-Emperor Seamount Chain and the Aleutian Trench. Base map from "This Dynamic Planet"




Hawaiian Hot Spot Map
Tectonic Plates and Active Volcanoes of the World. Most active volcanoes are located along or near the boundaries of Earth's shifting tectonic plates. Hawaiian volcanoes, however, occur in the middle of the Pacific Plate and are formed by volcanism over the Hawaiian "Hot Spot" (see text). Only some of the Earth's more than 500 active volcanoes are shown here (red triangles). USGS Image. Click image to enlarge


soil moisture
Block diagrams of divergent, convergent and transform plate boundaries.


Hawaiian Hot Spot
A cutaway view along the Hawaiian island chain showing the inferred mantle plume that has fed the Hawaiian hot spot on the overriding Pacific Plate. The geologic ages of the oldest volcano on each island (Ma = millions of years ago) are progressively older to the northwest, consistent with the hot spot model for the origin of the Hawaiian Ridge-Emperor Seamount Chain. Modified from image of Joel E. Robinson, USGS, in "This Dynamic Planet" map of Simkin and others, 2006. Click image to enlarge


More Volcanoes
  Volcanic explosivity Volcanic Explosivity
  Mount Vesuvius Vesuvius
  Mount St. Helens Mount St. Helens - 30 Years
  Yellowstone supervolcano Yellowstone Supervolcano
  Types of eruptions Types of Volcanic Eruptions
  Igneous rocks Igneous Rocks
  Mount Etna volcano Mount Etna
  Chaiten volcano Chaiten Volcano



© 2005-2014 Geology.com. All Rights Reserved.
Images, code and content of this website are property of Geology.com. Use without permission is prohibited. Pages on this site are protected by Copyscape.