McAfee SECURE sites help keep you safe from identity theft, credit card fraud, spyware, spam, viruses and online scams

Home » Minerals » Silver


Silver


The soft, white, native metallic element with a diversity of uses.



What is Silver?



Silver is a soft, white metal that usually occurs in nature in one of four forms: 1) as a native element; 2) as a primary constituent in silver minerals; 3) as a natural alloy with other metals; and, 4) as a trace to minor constituent in the ores of other metals. Most of the silver produced today is a product of the fourth type of occurrence.

Silver is known as a "precious metal" because it is rare and because it has a high economic value. It is valuable because it has a number of physical properties that make it the best possible metal for many different uses.

Silver has an electrical and thermal conductance that is higher than any other metal. It has a higher reflectivity at most temperatures than any other metal. It has an attractive color and luster that resist tarnish and make the metal desirable in jewelry, coins, tableware and many other objects.

These are just a few of silver's important properties. When performance is more important than price, silver is often the material of choice.


Physical Properties of Silver

Chemical Classification native element
Color silvery white
Streak silvery white
Luster metallic
Diaphaneity opaque
Cleavage none
Mohs Hardness 2.5 to 3
Specific Gravity 10.0 to 11.0
Diagnostic Properties color, specific gravity
Chemical Composition Ag
Crystal System isometric
Uses jewelry, tableware, coins, electronics, photographic films, ornaments


Silver as a Native Element Mineral



Silver is rarely found as a native element mineral. When found, it is often associated with quartz, gold, copper, sulfides of other metals, arsenides of other metals and other silver minerals. Unlike gold it is rarely found in significant amounts in placer deposits.

Native silver is sometimes found in the oxidized zones above the ores of other metals. It persists there because silver does not readily react with oxygen or water. It does react with hydrogen sulfide to produce a tarnished surface that is composed of the silver sulfide mineral known as acanthite. Many specimens of native silver that have been exposed to the atmosphere or to hydrothermal activity have an acanthite coating.

Most native silver is found associated with hydrothermal activity. In these areas it often occurs in abundance as vein and cavity fillings. A few of these deposits are large enough and rich enough in native silver to support mining. In most cases the economic viability of the deposit depends upon the presence of other valuable minerals. The mines are usually underground operations that follow the veins and cavities where the native silver occurs.

Native silver is usually without a characteristic crystal habit. When it forms in the open spaces of pockets and fractures some interesting crystal habits sometimes develop. The crystals are rarely the cubes, octahedrons and dodecahedrons expected of an isometric mineral. Instead the silver's habit is usually thin flakes, plates and dendritic crystal clusters formed in the narrow spaces of joints and fractures. Filiform and wire-like habits are also seen.

Related:   The Many Uses of Silver


Minerals that Contain Silver



The number of minerals that contain silver as an essential constituent is surprising. The right column of this page contains a partial list of silver minerals that includes 39 different species. Each of these is a distinct silver mineral. All of them are rare but a few such as acanthite, prousite and pyrargyrite can be found in sufficient quantities to warrant mining. Silver minerals can be sulfides, tellurides, halides. sulfates, sulfosalts, silicates, borates, chlorates, iodates, bromates, carbonates, nitrates, oxides, and hydroxides.


Natural Silver Alloys and Amalgams



Most gold found in placer deposits is alloyed with small amounts of silver. If the ratio between gold and silver reaches at least 20% silver the material is called "electrum". Electrum is the name of a natural alloy or gold and silver. A significant amount of today's silver production is a refining byproduct of gold mining.

Silver also forms a natural alloy with mercury. This silver amalgam is sometimes found in the oxidation zones of silver deposits and is occasionally associated with cinnabar.


Silver as a Constituent in Other Metals and Ores



Most of the silver produced today is a byproduct of mining copper, lead and zinc. The silver occurs within the ores of these metals in one of two ways: 1) substituting for one of the metal ions within the ore mineral's atomic structure; or, 2) occurring as an inclusion of native silver or a silver mineral within the ore mineral. The value of this minor silver within the ore mineral can exceed the value of the primary metal within the ore.

The diagram below considers the situation of argentiferous galena (galena that contains up to a few percent by weight of silver substituting for lead in the galena mineral structure).


galena value
Some mines producing galena produce more revenue from the silver content of their ore than from the lead content. Assume that we have a mine that produces argentiferous galena with an average composition of 86% lead, 13% sulfur and just 1% silver (as shown in the diagram on the left).

If the silver price is $25 per troy ounce and the lead price is $1 per avoirdupois pound the value of the lead in one ton of ore will be $1720 while the value of the silver in that same ton of ore will be $7292 (as shown in the diagram on the right).

The small amount of silver has a huge impact on revenue because at the prices assumed, silver is 364 times more valuable than an equal weight of lead. It is easy to understand why mining companies get excited by argentiferous galena! Even though galena is the ore being removed and lead makes up the bulk of the product, these mines are often called "silver mines."



Geographic Distribution of Silver Production



2013 Silver Production
Country
Metric Tons
Mexico 5,360
China 3,900
Peru 3,480
Australia 1,730
Russia 1,500
Bolivia 1,210
Chile 1,190
Poland 1,150
United States 1,060
Canada 663
Other Countries 4,230
The values above are estimated silver mine production in metric tons from USGS Mineral Commodity Summaries

Silver and silver-bearing minerals tend to be closely associated with magmatic activity as that is where hydrothermal activity also occurs.

This association holds especially well along western North, Central and South America where silver production follows the trend of the Andes Mountain Range. Argentina, Bolivia, Canada, Guatemala, Honduras, Mexico, Peru, and the United States are all significant producers of silver today and in the past. In other parts of the world, silver production is associated with igneous activity of any geologic age.

In Europe there is a band of current and geologically ancient volcanic activity that passes from Spain in the west into Turkey in the east. Much of the European silver production has been from this trend.

The table at left and the map at right show the top ten silver-producing countries in the world during calendar year 2013.




Find it on Geology.com




More from Geology.com


gem photos
100+ Gems - Photos of over 100 beautiful gems ranging from the popular to the obscure.
Coal
Coal Through a Microscope: Coal is more than a black rock. It's THE most interesting rock.
Mohs Hardness Test
Mohs Hardness Scale is a set of reference minerals used for classroom hardness testing.
Crater of Diamonds
You Can Be A Diamond Miner! At the Crater of Diamonds Mine you keep what you find.
Iris Agate
Iris Agate produces surprising colors when light passes through its thin bands.
The San Andreas Fault
The San Andreas Fault: A feature that separates the Pacific and North American Plates.
Pumice
Pumice is a rock formed during explosive volcanic eruptions. It has a wide variety of uses.
Ammolite
Ammolite is a fossil and a gemstone. It is shell material from fossil ammonites.


silver crystals - irocks
Crystals of native silver on calcite from the New Nevada Mine, Batopilas, Chihuahua, Mexico. Specimen is approximately 11 x 7 x 6 centimeters in size. Specimen and photo by Arkenstone / www.iRocks.com.




silver copper nugget - irocks
A stream-rounded nugget of silver and copper found in Keweenaw County, Michigan. Specimen is approximately 2.7 x 2.1 x 1.3 centimeters in size. Specimen and photo by Arkenstone / www.iRocks.com.


Minerals that Contain Silver

Acanthite Ag2S
Aguilarite Ag4SeS
Allargentum Ag1-xSbx
Andorite PbAgSb3S6
Arcubisite Ag6CuBiS4
Argentite Ag2S (when above 177°C)
Argyrodite Ag8GeS6
Arquerite (Ag,Hg)
Berryite Pb3(Ag,Cu)5Bi7Si6
Boleite KPb26Ag9Cu24(OH)48Cl62
Bromargyrite AgBr
Canfieldite Ag8SnS6
Chlorargyrite AgCl
Chrisstanleyite Ag2Pd3Se4
Crookesite Cu7(Tl,Ag)Se4
Dyscrasite Ag3Sb
Empressite AgTe
Fettelite Ag16HgAs4S15
Freibergite (Ag,Cu,Fe)12(Sb,As)4S13
Freieslebenite AgPbSbS3
Gabrielite Tl6Ag3Cu6(As,Sb)9S21
Hessite Ag2Te
Iodargyrite AgI
Jalpaite Ag3CuS2
Krennerite (Au0.8,Ag0.2)Te2
Marrite PbAgAsS3
Miargyrite AgSbS2
Moschellandsbergite Ag2Hg3
Pearceite Cu(Ag,Cu)6Ag9As2S11
Petzite Ag3AuTe2
Polybasite [(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Proustite Ag3AsS3
Pyrargyrite Ag3SbS3
Samsonite Ag4MnSb2S6
Stephanite Ag5SbS4
Stromeyerite AgCuS
Stützite Ag5-xTe3 (with x = 0.24 to 0.36) or Ag7Te4-
Sylvanite (Ag,Au)Te2
Uytenbogaardtite Ag3AuS2


silver wire - irocks
A specimen of wire silver with a heavy tarnish of acanthite on a calcite matrix. Specimen is approximately 6 x 4 x 3 centimeters in size. Specimen and photo by Arkenstone / www.iRocks.com.


silver copper nugget - irocks
The map above shows the top ten silver-producing countries in the world for calendar year 2013. Data from the USGS Mineral Commodity Summary.


More Minerals
  Minerals
  Fluorescent Minerals
  Quartz
  United States Gemstones
  Mineraloids
  Mineral Identification Chart
  Topaz
  Diamond




© 2005-2014 Geology.com. All Rights Reserved.
Images, code and content of this website are property of Geology.com. Use without permission is prohibited. Pages on this site are protected by Copyscape.