McAfee SECURE sites help keep you safe from identity theft, credit card fraud, spyware, spam, viruses and online scams

Home » Minerals » Chromite

Chromite


The only ore of chromium, the metal used to make stainless steel, nichrome and chrome plating.



What is Chromite?



Chromite is an oxide mineral composed of chromium, iron and oxygen (FeCr2O4). It is a dark gray to black in color with a metallic to submetallic luster and a high specific gravity. It occurs in basic and ultrabasic igneous rocks and in the metamorphic and sedimentary rocks that are produced when chromite-bearing rocks are altered by heat or weathering.

Chromite is important because it is the only economic ore of chromium, an essential element for a wide variety of metal, chemical and manufactured products. Many other minerals contain chromium, but none of them are found in deposits that can be economically mined to produce chromium.


Properties of Chromite



Chromite can be challenging to identify. Several properties must be considered to differentiate it from other metallic ores. Hand specimen identification of chromite requires a consideration of: color, specific gravity, luster, and a characteristic brown streak. The most important clue to identifying chromite is its association with ultrabasic igneous rocks and metamorphic rocks such as serpentinite.


Physical Properties of Chromite

Chemical Classification oxide
Color dark gray to black, rarely brownish black
Streak dark brown
Luster metallic to submetallic
Diaphaneity opaque
Cleavage none
Mohs Hardness 5.5 to 6
Specific Gravity 4.0 to 5.1 (variable)
Diagnostic Properties luster, streak
Chemical Composition FeCr2O4 with magnesium substituting for iron in significant amounts
Crystal System isometric
Uses


Chromite is sometimes slightly magnetic. This can cause it to be confused with magnetite. Chromite and ilmenite have very similar properties. Careful observations of hardness, streak and specific gravity are required to distinguish these minerals in hand specimens.


Chromite and Solid Solution



Magnesium frequently substitutes for iron in chromite. A solid solution series exists between the mineral chromite (FeCr2O4) and the isomorphous mineral magnesiochromite (MgCr2O4). Intermediate specimens can be rich in iron ((Fe,Mg)Cr2O4) or magnesium ((Mg,Fe)Cr2O4). For convenience in communication, these minerals are often referred to collectively as "chromite."

Some mineralogists give a generalized chemical composition of (Mg,Fe)(Cr,Al)2O4 for chromite. This composition recognizes multiple solid solution paths between chromite and hercynite (FeAl2O4), spinel (MgAl2O4), magnesiochromite (MgCr2O4), magnetite (Fe3O4), and magnesioferrite (MgFe2O4).

Because of the many different compositions in these solid solution series, geologists and metallurgists often consider "chromite" to be any member of the solid solution series that has a significant Cr2O3 content.


Stratiform, Podiform and Beach Sands



Small amounts of chromite are found in many types of rock. However, chromite deposits that are large enough for mining are generally found in: 1) stratiform deposits (large masses of igneous rock such as norite or peridotite that slowly crystallized from subsurface magma); 2) podiform deposits (serpentines and other metamorphic rocks derived from the alteration of norite and peridotite); and, 3) beach sands (derived from the weathering of chromite-bearing rocks).


STRATIFORM DEPOSITS

Stratiform deposits are large masses of igneous rock that cooled very slowly in subsurface magma chambers. During this slow cooling, chromite and associated minerals crystallized early while the magma was still at a very high temperature. Their crystals then settled to the bottom of the magma chamber to form a layered deposit. Some of the layers in these deposits can contain 50% or more chromite on the basis of weight.

Most of the world's known chromite occurs in two stratiform deposits: the Bushveld Complex in South Africa and the Great Dyke in Zimbabwe. Other important stratiform deposits include: the Stillwater Complex in Montana, the Kemi Complex of Finland, the Orissa Complex of India, the Goias in Brazil, the Mashaba Complex of Zimbabwe and small deposits in Madagascar. Nearly all of these are Precambrian in age.


PODIFORM DEPOSITS

Podiform deposits are large slabs of oceanic lithosphere that have been thrust up onto a continental plate. These slabs of rock, also known as "ophiolites," can contain significant amounts of chromite. In these deposits the chromite is disseminated through the rock and not highly concentrated in easy-to-mine layers. Podiform deposits are known in Kazakhstan, Russia, the Philippines, Zimbabwe, Cyprus and Greece.

The first discoveries of podiform chromite deposits were made near Baltimore, Maryland in the early 1800s. These deposits supplied nearly all of the world's chromite until about 1850. These deposits were small and are no longer in production.


BEACH SANDS

Chromite is found in beach sands derived from the weathering of chromite-bearing rocks and laterite soils that developed over peridotite. Beach sand rich in chromite and other heavy minerals is sometimes mined, processed to remove heavy minerals, and returned to the environment.

Two facts allow these chromite sands to occasionally contain economic deposits of chromite. First, chromite is one of the more weathering-resistant minerals of peridotite. That causes it to be concentrated in residual soils that form in the weathering zone above chromite-rich rocks. Second, chromite has a higher specific gravity than other minerals in peridotite. This causes it to be selectively transported and deposited by wave and current actions, concentrating it in certain locations at streams and beaches. These deposits are sometimes rich enough and large enough that they can be mined for chromite.


Uses of Chromite and Chromium



Chromium is a metal used to induce hardness, toughness and chemical resistance in steel. The alloy produced is known as "stainless steel." When alloyed with iron and nickel, it produces an alloy known as "nichrome" which is resistant to high temperatures and used to make heating units, ovens and other appliances. Thin coatings of chromium alloys are used as platings on auto parts, appliances and other products. These are given the name "chrome plated." It is also used to make superalloys that can perform well in the hot, corrosive, and high-stress environment of jet engines.

Chromium's name comes from the Greek word "chroma" which means "color." Chromium is used as a pigment in paint. The familiar yellow lines painted down the center of highways and the yellow paint used on school buses are often "chrome yellow" - a color produced from chromium pigment. Chromium is an important pigment in many types of paint, ink, dye and cosmetics. Trace amounts of chromium produce the color in many minerals and gemstones. The red color of ruby, the pink of some sapphires and the green color of emerald are caused by tiny amounts of chromium.


Chromium Production and Recycling in the United States



Chromium is not mined in the United States. The chromium consumed by United States industry comes from: A) other countries in the form of chromite ore, ferrochromium or chromium metal; or, B) chromium recovered from recycled metals. Over half of the chromium used in the United States today is from recycling.

Because chromium is essential for the defense and prosperity of the United States, the federal government maintains a stockpile of chromite ore, ferrochromium and chromium metal for use in a national emergency. This type of emergency could occur if the United States was involved in a war and the enemy prevented the delivery of chromite and chromium products by sea transport. In addition, small chromite deposits have been located in the United States which could be mined if they are needed.


Chromite and Diamond Exploration



How do diamonds form?
How do diamonds form?
A detailed article that explains the four sources of diamonds found at Earth's surface.

Kimberlite, the type of rock that holds many of the world's most important diamond deposits, usually contains small amounts of chromite, ilmenite and certain types of garnet. Although these minerals occur in very small amounts, they are much more common in the rock than diamonds. Because these minerals do not occur together in most other types of rocks, they can be a valuable indicator of a nearby kimberlite body if they are found in stream sediments, glacial tills, residual soils, core samples or well cuttings. Some of the greatest diamond deposits on Earth were discovered using the geology of indicator minerals.


Contributor:



Find it on Geology.com




More from Geology.com


Fluorescent Minerals
Fluorescent Minerals glow with spectacular colors under ultraviolet light.
Iris Agate
Iris Agate produces surprising colors when light passes through its thin bands.
uses of gold
The Many Uses of Gold: Unique properties make gold one of the most useful metals.
Plate Tectonics
Plate Tectonics: Articles and maps about plate tectonics and the interior of Earth.
Dallol Volcano
Strange Volcanic Landscape! Photos of Dallol Volcano - an explosion crater in Ethiopia.
Oil and Gas
Oil and Gas: Articles about oil and natural gas in the US and around the world.
Mount Cleveland
Mount Cleveland is an active volcano in the Aleutian Islands and a threat to air traffic.
Coal
Coal Through a Microscope: Coal is more than a black rock. It's THE most interesting rock.


Chromite
Chromite from the Transvaal area of South Africa. Specimen is approximately 4 inches (10 centimeters) across.




Bushveld stratiform chromite deposit
A field photo of the Bushveld LG6 chromite seam. This clearly shows the stratiform nature of the deposit. USGS photo by Klaus Schulz.


Mineral Information
 Andalusite
 Anhydrite
 Apatite
 Arsenopyrite
 Augite
 Azurite

 Barite
 Bauxite
 Beryl
 Biotite
 Bornite

 Calcite
 Cassiterite
 Chalcocite
 Chalcopyrite
 Chlorite
 Chromite
 Chrysoberyl
 Cinnabar
 Clinozoisite
 Copper
 Cordierite
 Corundum
 Cuprite
 Diamond
 Diopside
 Dolomite

 Enstatite
 Epidote

 Fluorite

 Galena
 Garnet
 Glauconite
 Gold
 Graphite
 Gypsum

 Halite
 Hematite
 Hornblende

 Ilmenite

 Jadeite

 Kyanite
 Limonite

 Magnesite
 Magnetite
 Malachite
 Marcasite
 Molybdenite
 Monazite
 Muscovite

 Nepheline
 Nephrite

 Olivine
 Orthoclase

 Plagioclase
 Prehnite
 Pyrite
 Pyrophyllite
 Pyrrhotite

 Quartz

 Rhodochrosite
 Rhodonite
 Rutile
 Scapolite
 Serpentine
 Siderite
 Sillimanite
 Silver
 Sodalite
 Sphalerite
 Spinel
 Spodumene
 Staurolite
 Sulfur
 Sylvite

 Talc
 Titanite
 Topaz
 Tourmaline
 Turquoise

 Uraninite

 Witherite
 Wollastonite

 Zircon
 Zoisite


chrome yellow paint Did You Know? School buses and yellow lines on highways are often painted with "chrome yellow" paint. The "chrome" means chromium was used as an ingredient. Image © iStockphoto / 2windspa.


Chromite
Chromite from the Transvaal area of South Africa. This specimen is approximately 3.5 inches (9 centimeters) across.


Chromite
Chromite from Shurugwi, Zimbabwe. Specimen is approximately 4 inches (10 centimeters) across.


ruby red from chromium Did You Know? The color of many gemstones is derived from trace amounts of chromium. The red color of rubies, the pink of some sapphires and the green color of emeralds are derived from chromium. Image © iStockphoto / ProArtWork.


Chromite Production and Reserves
Country 2011 Mine Production 2012 Mine Production (estimated) Reserves
India 3,850 3,800 54,000
Kazakhstan 3,800 3,800 210,000
South Africa 10,200 11,000 200,000
Other Countries 5,450 5,300 NA
United States 0 0 620
The values above are estimated chromite production and reserves in thousands of metric tons. Data from USGS Mineral Commodity Summaries. [2]


Chromite Information
[1] Stratiform Chromite Deposit Model: Ruth F. Schulte, Ryan D. Taylor, Nadine M. Piatak, and Robert R. Seal II; Chapter E of Mineral Deposit Model for Resource Assessment; Scientific Investigations Report 2010-5070-E; 131 pages; November 2012.

[2] Chromium: John F. Papp, United States Geological Survey, Mineral Commodity Summaries, January 2013.

[3] Chromium: John F. Papp, United States Geological Survey, 2011 Minerals Yearbook, April 2013.

[4] Chromium Makes Stainless Steel Stainless: S. J. Kropschot and Jeff Doebrich, United States Geological Survey, Fact Sheet 2010-3089, September 2010.

[5] How a Rogue Geologist Discovered a Diamond Trove in the Canadian Arctic: Carl Hoffman, Wired Magazine, Issue 16.12, accessed July 2013.


Diamonds Don't Form From Coal
The Only Diamond Mine in the USA
Mineral Rights
Rock Type Photo Gallery
Who Owns The Arctic?
San Andreas Fault - Zoom In
What Causes a Tsunami?
What is a Debris Flow?




© 2005-2014 Geology.com. All Rights Reserved.
Images, code and content of this website are property of Geology.com. Use without permission is prohibited. Pages on this site are protected by Copyscape.