Home » Minerals » Diamond » Colored Diamonds

Colored Diamonds

When small imperfections create spectacular beauty


Author: , Ph.D., GIA Graduate Gemologist

IBD Colored Diamonds

Colored Diamonds: Diamonds can occur in a variety of beautiful colors. Images in the wonderful collection of colored diamonds shown above are used with permission of IBD Fancy Colors LLC. They include from top left, going clockwise: a heart-shaped diamond with a Fancy Vivid pink color weighing 0.70 carats; a Fancy Vivid yellowish-orange pear-shaped diamond weighing 0.85 carats; a Fancy Vivid yellow radiant cut diamond weighing 0.56 carats; a Fancy Deep brown radiant cut diamond weighing 1.00 carat; a Fancy Intense blue radiant cut diamond weighing 0.53 carats; and a Fancy Vivid green radiant cut diamond weighing 0.17 carats. They represent some of the finest hues of Fancy-color diamonds.

Table of Contents

What Are Colored Diamonds?
Prices of Colored Diamonds
Who Buys Colored Diamonds?
What Causes Color In Diamonds?
    Atom Substitution Defects
    Vacancy Defects
    Graining Defects
    Mineral Inclusions
Modified and Secondary Hues
Sources of Colored Diamonds
Colored Diamond Treatments
Colored Diamond Reports
Color In Lab-Grown Diamonds
Colored Diamonds at $800/carat

What Are Colored Diamonds?

Colored diamonds are diamonds that have a noticeable bodycolor when viewed in the face-up position. Brown and yellow are the most common colors in natural colored diamonds. Diamonds with natural pink, blue, orange, green, red, and violet bodycolors are extremely rare.

Out of 100,000 diamonds, only a few will have one of the extremely rare colors. The color can have any intensity between "very light" and "vivid". To be considered a "colored diamond" the color must be noticeable when the diamond is in the face-up position. Black, gray, and white diamonds are also possible.

the Fancy Red Argyle Isla Diamond

Argyle Isla: The Argyle Isla is a 1.14-carat Fancy Red radiant-cut diamond mined from the Argyle Mine in Western Australia. It is one of the most valuable diamonds in the world on the basis of dollars per carat. It was part of the Argyle Tender Heroes sale in 2017. Image Copyright 2017 by Rio Tinto.

Prices of Colored Diamonds

A combination of rarity and intense public interest drives the prices of the rarest colored diamonds with a perfect and vivid hue to incredible levels. These rare-color diamonds can sell for millions of dollars per carat. They have more value for their size than almost any other material.

Colored diamonds are sold at a wide range of prices. Those with less saturated or intermediate hues, in smaller sizes, and in more common colors sell for more affordable prices. Natural yellow, brown, or black diamonds often sell for prices that are not greatly different from similar-size diamonds on the D-to-Z color scale. Brown diamonds occur in a very wide and beautiful color range - from light brown gems with a "champagne" color to vivid reddish brown gems with a rich "cognac" color. Black diamonds are one of the most affordable colors, and many people enjoy them.

If you can afford a diamond, you can probably find a beautiful colored diamond by selecting yellow, brown or black.

colored diamond collection of Gardner F. Williams

An artist's sketch of a collection of rough diamonds of various colors and crystal habits once owned by Gardner F. Williams, general manager of De Beers Consolidated Mines, LTD., from 1887 until 1905. The collection above nicely exhibits the colors and crystal habits of diamond. Williams was the author of The Diamond Mines of South Africa; Some Account of their Rise and Development (1905) [12]. At the time that this collection was assembled, colored diamonds were a novelty that obviously attracted the attention of Williams; however, the marketplace did not celebrate their true rarity and price them anywhere near what they command today.

Common Causes of Color in Diamond

Pink Pink is a rare natural color in diamonds. It occurs when the diamond is subjected to stress within the Earth, and those forces cause glide planes of carbon atom displacement within the diamond crystal. When light passes through the planes, red light is selectively transmitted. The red light appears pink when the selective transmission is weak. The selective transmission is rarely strong enough to produce a red color.
Red Red diamonds are extremely rare in nature, and they are the most valuable diamonds when in a pure hue. Like pink diamonds, they have been subjected to stress which deformed the diamond crystal lattice, causing glide planes of carbon atom displacement. When light passes through the planes of displacement, the red wavelengths of light are selectively transmitted. Weak transmission of red light will produce a pink diamond.
Orange Orange diamonds are very rare. The defect(s) that produce the orange color have not been determined with certainty and may vary from one orange diamond to another. The defects in orange diamonds cause them to selectively absorb blue light and selectively transmit orange.
Yellow Yellow is the second most common natural color in diamonds. The color is usually caused by nitrogen atoms substituting for carbon in the diamond crystal lattice. This defect causes diamond to selectively absorb blue light and selectively transmit yellow.
Green Green diamonds are very rare in nature. The color usually develops when high-energy radiation emitted by nearby radioactive mineral grains penetrates the diamond. The radiation knocks carbon atoms out of their position in the diamond crystal lattice, and that defect causes the diamond crystal to selectively absorb red light and selectively transmit green. Green color can also be a result of defects produced by the presence of nitrogen, hydrogen, or nickel within the diamond crystal.
Blue Blue diamonds are rare in nature. The blue color is most often caused by boron atoms substituting for carbon atoms in the crystal lattice of diamonds that have formed at extreme depths. As little as one boron atom per million carbon atoms can produce a noticeable blue color. Boron in the diamond crystal causes the selective absorption of red light and the selective transmission of blue. [14]
Violet Violet is one of the rarest natural colors in diamond. It is sometimes caused by substitution of hydrogen in place of carbon in the diamond crystal lattice.
Purple Purple is another rare color in diamond. In a study of 50 purple diamonds by GIA, they often found H3 and N3 color centers, sufficient enough to influence color. Purple diamonds and some pink diamonds modified by purple often exhibit color concentration along glide planes of carbon atom displacement. [15] [16]
Brown Brown is the most common natural color in diamonds. The color develops when plastic deformation creates planes of missing and displaced carbon atoms in the diamond crystal lattice. These are known as glide planes, and they are where the brown color is concentrated. They can appear as a series of parallel color bands in the diamond known as "graining".
White White diamonds occur in nature when the diamond has dense clouds of fine, reflective inclusions. The numerous inclusions can interfere with the passage of light and give the diamond a translucent or opalescent appearance.
Black Black diamonds with a natural color usually contain such a high density of mineral inclusions that very little light passes through the gem. Common inclusions in black diamonds include graphite, pyrite, or hematite. Black color in heavily fractured diamonds can be caused by graphitization of the fracture surfaces.
Please note: The causes of color listed above are just a few of the many causes of color in natural diamonds. Numerous other natural defects can produce color. People also change or induce color in diamonds by treatments that include irradiation, heating, and coating - and by combinations of multiple treatments. There are many causes of color in diamonds, and researchers are only beginning to understand them.

Who Buys Colored Diamonds?

Colored diamonds are among the most beautiful and eye-catching gems. Many colored diamonds are purchased by consumers. They buy them already set in jewelry or have them set into specially designed jewelry that they intend to wear. These people love beautiful gems, and a custom-designed setting with a sparkling colored diamond is the ultimate jewelry item.

Museums are another buyer of colored diamonds. They purchase colored diamonds when building or improving their gemstone and mineral exhibits. Colored diamonds are among the most popular exhibits at many museums.

Gem collectors purchase a lot of colored diamonds. In fact, many museums have received their colored diamonds through the gifts and bequests of gem collectors.

Research institutions buy colored diamonds for study and for their reference collections. The Gemological Institute of America has a large collection of colored diamonds that they use for study and to improve their ability to grade colored diamonds. They maintain the world's largest masterstone sets for color-grading colored diamonds.

A few people purchase colored diamonds in hopes of price appreciation or to own a very small item with a very high value. Colored diamond prices have climbed steadily for the past several decades as more people have learned about them, and public interest has been fueled by spectacular prices seen in public auctions. However, there is no guarantee that this price trend will continue. Anyone interested in investing in colored diamonds would be very wise to learn a lot about them and find a trusted seller who can offer them at investor prices.

Le Vian, a jewelry design and manufacturing company, has trademarked the name "Chocolate Diamonds". They source brown diamonds within their "chocolate color range" and use them to produce a world-famous brand of diamond jewelry. Their "chocolate diamonds" are budget-priced and easy to find in stores. They make the purchase of a colored diamond accessible to people who might otherwise not be able to afford them.

What Causes Color In Diamonds?

Natural diamond is a mineral and a rare form of crystalline carbon. A diamond composed entirely of carbon and with a perfect crystalline structure will be colorless. Diamonds that perfect rarely exist. Instead, most diamond crystals accumulate defects during crystal growth and during their long history within the Earth. Multiple types of defects can be incorporated in a single diamond.

Defects in a diamond crystal can modify the way that light passes through. They can cause the diamond crystal to selectively transmit some wavelengths of light and selectively absorb other wavelengths of light. Because each wavelength of light corresponds to a different color, selective transmission and absorption determine the diamond's apparent color in the eye of the observer. Some of the most important color-causing defects are described below.

Three Nitrogens and a Vacancy Defect in Diamond

Three Nitrogens and a Vacancy Defect: Yellow color in mined diamonds can be caused by the N3 defect. It consists of three nitrogen atoms substituting for carbon atoms that surround one vacant carbon position. This defect is often accompanied by an N2 defect, and their pairing may contribute to yellow color. Illustration modified after a Creative Commons image by Materialscientist.

Atom Substitution Defects

One of the most common color-causing defects in diamond occurs when an atom of an element other than carbon substitutes for a carbon atom in the diamond crystal lattice. Substitution of nitrogen for carbon can produce a yellow diamond.

Substitution of nitrogen can cause the diamond crystal to selectively absorb blue wavelengths of light and selectively transmit yellow. That transmitted yellow light reaches the observer's eye and causes the observer to perceive an apparent yellow color in the diamond.

Out of all the different elements, only a few have atoms tiny enough to substitute for carbon in a way that produces color. Nitrogen, boron, and hydrogen are among the few that have the ability to substitute naturally for carbon in the diamond crystal lattice.

Substitution of boron for carbon can cause a diamond to appear blue. Substitution of hydrogen can cause a violet color in some diamonds.

Radiation-Induced Defect in Diamond

Radiation-Induced Defect: Color in green diamonds is often a result of radiation exposure. The radiation knocks carbon atoms out of their position in the diamond crystal lattice. Illustration modified after a Creative Commons image by Materialscientist.

Vacancy Defects

Exposure to radiation can contribute to the color of a diamond. If a diamond is located near radioactive mineral grains during its time within the Earth, it can be exposed to a stream of high-velocity particles. These high-velocity particles can knock carbon atoms out of their lattice position within the diamond.

This vacancy defect can cause the selective absorption of red light and the selective transmission of green. When the transmitted green light reaches the observer's eye, the diamond will appear green. This is the cause of color in many naturally green diamonds.

Pink Graining in Diamond

Pink Graining in Diamond: In this photomicrograph, you are looking into the interior of a rough diamond through a small polished window on its surface. The pink vertical lines are "graining" caused by plastic deformation of the diamond crystal lattice. Each line traces a slip plane within the diamond where carbon atoms have been displaced. In this view the slip planes intersect the polished window at a right angle. Each slip plane is a defect in the diamond that causes the diamond to selectively absorb green light and selectively transmit red. Note the tiny offsets where the slip planes intersect the edges of the polished window. A small amount of pink graining in a diamond crystal can cause that diamond crystal to have a pink color. Where the amount of graining is very high the diamond crystal can have a red color. Pink and red diamonds are caused by the same type of defect. The color (pink or red) is determined by the abundance of pink graining in the stone. Photograph by the United States Naval Research Laboratory.

Graining Defects

During their formation and residence within the Earth, all diamonds are exposed to the compressional forces of the deep Earth. In some diamonds, this stress can be applied in a manner that deforms the diamond's crystal lattice by displacing carbon atoms from their normal positions. The deformation produces bands of slightly displaced atoms through the diamond crystal, known as graining.

Graining can produce brown color in diamond, and in very rare instances, pink or red color. Sometimes, during microscopic examination, bands of dislocated atoms can appear as parallel color zones within the diamond. These features are known as "graining" because of their similar appearance to wood grain. Occasionally the graining is strong enough to be visible with the unaided eye. When visible at 10x magnification, the graining can be considered as a clarity characteristic in the diamond and might influence both the bodycolor of the gem and its clarity grade.

The Argyle mine in Australia is the best-known mine in the world for producing diamonds colored by graining defects. About 80% of the diamonds produced at the mine are brown in color. Argyle is also the world's most important source of diamonds with a pink or red natural color. The mine usually produces a few hundred pink diamonds per year. However, in an entire decade the mine will produce only a few carats of diamond with a pure red hue.

Mineral Inclusions

Black color in diamonds can be caused by a high density of inclusions - so many inclusions that they interfere with the passage of light. The inclusions in black diamonds are usually opaque minerals such as graphite, hematite, or pyrite. When the inclusions have a very small particle size and are uniformly distributed, they can render the diamond opaque, with a handsome black color and a highly reflective surface. Some black diamonds obtain their color from small surface-reaching fractures that have been graphitized.

The name "white diamonds" is often used in reference to transparent diamonds on GIA's D-to-Z color grading scale. That usage is common, but it is not precise.

The name "white diamonds" is best used for diamonds with a white bodycolor. White diamonds often contain dense clouds of very fine-grained transparent to translucent mineral inclusions that interfere with the passage of light through the diamond. These inclusions can cause the diamond to have a white translucent color, and if they are slightly reflective they can produce an opalescent "glow" within the gem. These diamonds have a truly white bodycolor and are considered to be "colored diamonds" or "Fancy white" diamonds if the quality of their white color merits these designations.

Fancy Vivid orangy yellow diamond

Fancy Vivid Orangy Yellow: In 2018, ALROSA surprised the diamond market by auctioning a collection of 250 colored diamonds in Hong Kong. Known as the "True Colors" auction, ALROSA intends to make the sale an annual event and reports that they will easily be able to support the annual sale because they produce at least 7000 carats of colored diamonds per year. The stone above is an oval-cut, 15.11-carat, Fancy Vivid orangy yellow, VVS2 clarity gem. Photograph by ALROSA.

Modified and Secondary Hues

Very few diamonds have a pure hue, such as red, blue, green, orange, or yellow. These are the most sought-after diamonds, and their prices are usually very high. Instead, most colored diamonds have a color that is intermediate between pure hues such as yellow and green. As an example, yellow diamonds might exhibit hints of green (greenish yellow) or orange (orangy yellow). The possible colors of diamond form a gradient of colors across the visible spectrum.

The existence of all of these intermediate colors suggests that the processes that cause color in diamonds are very complex, and that multiple causes of color can exist in a single diamond. This is what produces the incredible spectrum of diamond colors that are possible in nature.

The diamonds that depart from a pure hue provide buying opportunities to the shopper. They usually sell for lower prices than diamonds with a pure hue. Buyers who like them and can afford them can obtain a colored diamond at a lower price than a diamond of premium color.

the Fancy Deep Gray Violet Argyle Liberte Diamond

Argyle Liberte: The Argyle Liberte is a 0.91-carat Fancy Deep gray-violet radiant-cut diamond mined from the Argyle Mine in Western Australia. It was part of the 2017 Argyle Tender sale. Image Copyright 2017 by Rio Tinto.

Sources of Colored Diamonds

One of the all-time greatest sources of diamonds, and the source of many famous colored diamonds, are the diamond mines of the Golconda Sultanate (today the Indian states of Telangana and Andhra Pradesh). These mines were the source of many important colored diamonds including the Nassak (43.8 carats, blue), Sancy (55.23 carats, yellow), Daria-i-Noor (182 carats, pink), Hope (67 carats, blue), Dresden Green (41 carats, green), Princie (34.65 carats, pink), Wittelsbach-Graff (31 carats, blue), Idol's Eye (70.21 carats, blue), Agra (31.41 carats, pink), and Noor-ul-Ain (60 carats, pink). Diamond mining began in the Golconda Sultanate as early as the 1400s and continued well into the 1600s.

The most important source of colored diamonds in recent years is the Argyle mine of Western Australia. It has been the world's most important source of pink, red and violet diamonds. It is also the source of much of the brown and "chocolate" diamonds to the market.

No mine can be considered an abundant source of premium-color pink, red, orange, blue, green, or violet diamonds. These colors are truly rare. However, a few mines are known to regularly produce small quantities of colored diamonds. Some of the better-known sources are summarized below by color.

Fancy Vivid purplish pink diamond

Fancy Vivid Purplish Pink: The photo above is of a Fancy Vivid purplish pink diamond, part of ALROSA's 2019 True Colors auction at the Hong Kong Jewellery & Gem Fair. This is a spectacular diamond, weighing 0.55 carat, with a GIA cut grade of excellent, and a clarity grade of internally flawless. It was found at ALROSA's Arkhangelsk mine. [15] With the Argyle Mine in Australia scheduled to close in 2020, ALROSA could become the world's premier producer of colored diamonds. Photograph by ALROSA.

Pink and Red: The Argyle Mine in Australia is currently a source for small quantities of pink diamonds and a rare red diamond. The Golconda mines of India have been historic sources of pink diamonds. Occasional pink diamonds are produced at the Lulo alluvial project in Angola, the Minas Gerais area of Brazil, the Williamson mine in Tanzania, the Premier mine in South Africa. In Russia, the Lomonosov, Yakutia, and Arkhangelsk Mines owned by ALROSA have been producing a small number of pink diamonds per year.

Orange: Orange diamonds are extremely rare, and no locality has established a name as a steady source.

Yellow: Yellow is the second most common diamond color after brown. Diamonds with Fancy-grade yellow color are found in small quantities at many mines throughout the world.

Green: The Golconda mines in India have been a historic source for a few green diamonds. Small numbers of green diamonds have also been mined in Brazil, the Central African Republic, Guyana, South Africa, and Zimbabwe.

Blue: The Cullinan Mine (formerly the Premier Mine) in South Africa is the best-known producer of blue diamonds. Since 2009, Petra Diamonds, owner of the Cullinan Mine, has auctioned several large (over 25 carats) pieces of blue diamond rough. Other mines in Brazil, India, Indonesia, Sierra Leone, and South Africa have been known to produce occasional blue diamonds.

Violet: The Argyle Mine of Australia is one of the only sources of violet diamonds. Most of the world's diamonds with a pure violet hue have been mined from Argyle. Yet, less than 100 carats of rough violet diamond have been found in the entire history of the mine.

Purple: Two ALROSA mines in Russia, Yakutia and Arkhangelsk, have produced a small number of diamonds with purple as their dominant hue. Their purple color is usually modified by pink.

Brown: Brown is the most common color of colored diamonds. Brown diamonds are abundant and found in diamond deposits throughout the world. The best-known mine for producing brown diamonds is the Argyle mine in Australia, where over 80% of the gem-quality diamonds produced are brown. A few Alrosa mines in Russia produce significant quantities of brown diamonds.

Colored Diamond Treatments

Information in the article above is concerned with the causes of natural color in diamonds. However, a large and growing number of treatments are being used to modify the color of diamonds. These treatments can be divided into two groups: 1) surface treatments that modify the apparent color of the diamond; and, 2) crystal lattice modifications that change the way that light travels through the diamond.

1) Surface Treatments involve applying a substance to the surface of a diamond that alters the color of light that travels through the diamond, or, applying a substance to the surface of a diamond that alters the color of light that is reflected from the surface of a diamond.

Some of the earliest and simplest treatments involved applying ink or paint to the culet, pavilion, or girdle of a diamond. The application of a colored material to these surfaces of a diamond can cause that color to be reflected through the diamond, changing the apparent color of the diamond when it is viewed in the face-up position. These changes are not permanent, but if they are applied to surfaces that are protected by a setting that prevents abrasion or removal, they can persist for a long time.

Another type of treatment involves applying metal oxide coatings to the surface of a diamond. These colored coatings reflected color from the surface of the diamond and reflect color through the interior of the diamond. The coating, instead of the diamond, is responsible for the color of light that reaches the eye of the observer. Examples are: SiO2 coatings doped with gold to produce pink color; SiO2 coatings doped with silver to produce blue or yellow color; and Fe2O3 coatings to produce orange color. These treatments are not permanent but can produce a vivid apparent color. [17]

2) Crystal Lattice Modifications are done using irradiation, high-temperature / high-pressure annealing, low-pressure / high-temperature annealing, and combinations of treatments applied in different sequences. These treatments produce the same types of defects found in natural diamonds that have been exposed to a similar history of conditions within the Earth. The results of these treatments vary and can be dependent upon the characteristics of the original diamond.

Modification of a diamond’s color by any type of treatment can be a legitimate business practice if that treatment is fully disclosed to, and understood by, people who purchase the diamond. Any special care requirements must also be disclosed at the same time. Diamonds with a color produced by treatment should be sold for lower prices than similar-color diamonds with a color of natural origin.

Many buyers gladly purchase diamonds that have treatment-produced color and enjoy their significantly lower prices. At the same time, many buyers strongly dislike gems that have been treated because they are only interested in diamonds with natural color. These buyers insist upon full disclosure of any treatments and are willing to pay a premium price for natural-color diamonds.

A brief introduction to diamond treatments and information about the range of colors possible can be found in a GIA article here. [8]

Colored Diamond References

[1] Natural-Color Green Diamonds: A Beautiful Conundrum: by Christopher M. Breeding, Sally Eaton-Magana, and James E. Shigley; Gems & Gemology, Volume 54, Number 1, pages 2 to 27, Spring 2018.

[2] The Nature of Diamonds: by George E. Harlow; a book published by Cambridge University Press in association with the American Museum of Natural History; 278 pages; 1998.

[3] Secrets of the Gem Trade: The Connoisseur's Guide to Precious Gemstones: by Richard W. Wise; a book published by Brunswick House; second; 404 pages; December 2016.

[4] Diamonds and Color: Gemological Institute of America; Chapter 12; Diamonds & Diamond Grading course materials; page 13; Revised 2014 edition.

[5] The Beauty of Blue Diamonds; article on the Gemological Institute of America website, accessed October 2018.

[6] Natural-Color Blue, Gray, and Violet Diamonds: Allure of the Deep: by Sally Eaton-Magana, Christopher M. Breeding, and James E. Shigley; Gems and Gemology, Volume 54, Number 2, pages 112 to 131; Summer 2018.

[7] Black Diamonds: What You Need to Know; article on the Gemological Institute of America website, accessed October 2018.

[8] Changing a Diamond's Color; article on the Gemological Institute of America website, accessed October 2018.

[9] Characterization and Grading of Natural-Color Pink Diamonds: by John M. King, James E. Shigley, Scott S. Guhin, Thomas H. Gelb, and Matthew Hall; Gems & Gemology, Volume 38, Number 2, pages 128 to 147, Summer 2002.

[10] How They’re Made - Laboratory-Grown Diamonds: article on the Lightbox Jewelry website, accessed November 2018.

[11] Naval Research Laboratory Takes a Close Look at Unique Diamonds: by Donna McKinney; news release on the United States Naval Research Laboratory website, March 21, 2010.

[12] The Diamond Mines of South Africa: Some Account of their Rise and Development, by Gardner F. Williams; The Macmillan Company; 1902, Volume 2, frontispiece.

[13] De Beers’ Stephen Lussier on Forevermark and Lightbox by Rob Bates; an article on the JCK website, published May 31, 2019.

[14] NOVA: Treasures of the Earth: DVD by Doug Hamilton and others; a NOVA / PBS program, 180 minutes, 2016.

[15] ALROSA No 1 True Colors Auction Program: a description of lots to be offered at the 2019 Hong Kong ASIA WORLD EXPO, published on the ALROSA website, accessed in August, 2019.

[16] Natural-Color Purple Diamonds from Siberia: by Sergey V.Titkov, James E. Shigley, Christopher Breeding, Rimma M. Mineeva, Nikolay G. Zudin and Aleksandr M. Sergeev; Gems & Gemology, Volume 44, Number 1, pages 56 to 64, Spring 2008.

[17] Serenity Coated Colored Diamonds: Detection and Durability: by Andy H. Shen, Wuyi Wang, Matthew S. Hall, Steven Novak, Shane F. McClure, James E. Shigley, and Thomas M. Moses; Gems and Gemology, Volume 43, Number 1, pages 16 to 34, 2007.

Colored Diamond Reports

If you are buying or selling a colored diamond, it is a good idea to have an independent laboratory examine the gem and determine: A) if the material is indeed diamond; B) if the diamond is natural or lab-created; C) if the diamond’s color is natural or a product of treatment; D) if the diamond has been subjected to any other treatments; and, E) the color grade of the diamond.

In terms of color, the "ultimate diamond" has either a complete lack of color or a highly saturated color in a pure hue. An extremely rare diamond will occupy one of these positions.

Those which approach a complete lack of color are graded on the D-to-Z color scale developed by the Gemological Institute of America. A diamond with an absence of color earns a grade of "D" and is said to be "colorless". Progressing down the scale below D, at grades of E, F, G, etc. diamonds will exhibit very small amounts of color. The color is usually yellow, brown or gray. This grading is done in the table-down position.

A rare percentage of diamonds will exhibit traces of other colors such as pink, blue, orange, green, etc. If the color of these diamonds is noticeable in the face-up position, they will earn the term "colored diamonds" with colors described as "faint', "very light" or "light". People familiar with colored diamonds will immediately recognize "faint" color. But, inexperienced persons might not notice "faint" color unless they receive a cue to look for it or have a comparison stone nearby. Diamonds with "very light" or "light" color are much more noticeable.

Diamonds that have enough color to exceed "Z" on the D-to-Z scale will receive a grade known as "Fancy". Depending upon their tone and saturation when viewed in the face-up position, they will be given Fancy grades as follows:

Fancy Light
Fancy Dark
Fancy Deep
Fancy Intense
Fancy Vivid

The names of these grades are important, and they are to be capitalized in all written communications. Diamonds in all of these grades can be beautiful, but those earning grades of Fancy Intense and Fancy Vivid are the most valuable. All of these diamonds have very rare color.

Grades are assigned to colored diamonds by highly trained experts who work with the aid of colored master stones for consistency. Expert grading is very important because the color grade of a diamond can make an enormous difference in its value.

Anyone who purchases a valuable diamond is wise to pay for the service of a colored diamond report. The cost of the report is very small when compared to the cost of the diamond. The best-known source of colored diamond grading reports is the Gemological Institute of America. Descriptions and fees for GIA reports can be seen here.

green laboratory-grown diamond

A Laboratory-Grown Diamond with Post-Growth Color Treatment: The blue-green lab-grown diamond above had an "as-grown" orange-yellow color, then post-growth irradiation and annealing treatments transformed it into a deep blue-green color. This lab-grown diamond was produced by D.NEA Diamonds. Its GIA Synthetic Diamond Report can be seen here.

Color In Lab-Grown Diamonds

Many of the earliest lab-grown diamonds were yellow in color. Earth's near-surface atmosphere is 78% nitrogen, and keeping nitrogen out of the growing process was extremely difficult. Eventually this problem was solved, and now growers have almost complete control over the diamond-growing process.

Today, lab-grown diamonds with an intentional or "as grown" color are common products in the gem and jewelry industry. These diamonds are grown in environments that introduce color-causing atoms or other defects into the diamond while the crystal lattice is developing.

Lab-grown diamonds are also subjected to "post growth" treatments to modify their colors. These lab-grown colored diamonds are sold in a spectrum of colors and sell for prices that are significantly less than mined diamonds with natural color - sometimes less than 1% of the cost of a similar-quality diamond with a natural color.

Lab-grown diamonds give people who are unable to afford (or who prefer not to pay) the high cost of a natural diamond with natural color an opportunity to obtain a similar-looking piece of jewelry at a much lower cost.

Lightbox advertising

Lightbox Advertising: This is one of the early online advertisements promoting the sale of Lightbox Jewelry. Note the use of the words "lab-grown diamonds" to clearly communicate the man-made origin of their diamonds, which were available in pink, blue and "white". We started seeing Lightbox Jewelry ads of various designs months before their products were available for purchase, and continued seeing them heavily through Christmas 2018 and Valentine's Day 2019. We saw some of these ads on Geology.com and other websites that we visit relevant to gems and jewelry. But, after visiting the Lightbox Jewelry website, we suddenly started seeing Lightbox ads at a high rate of frequency on many other websites that we visited, regardless of their content topic. The ads were targeted to visitor behavior rather than being space purchased on various websites. We receive no compensation for displaying the ad above, and have no agreements or relationship with LightboxJewelry.com.

The author believes that Lightbox publicity and advertising was responsible for triggering use of the term "lab-grown diamonds" by many people who use Google search. Why? One week after the De Beers announcement, the query "lab grown diamonds" exploded in relative frequency on Google Trends relative to the queries "lab-created diamonds", "man-made diamonds". You can see that for yourself here. The big blue spike centers on the first week of June 2018, just days after the Lightbox announcement and release of the ads.

Colored Diamonds at $800/carat

Element Six, a De Beers-owned company, has been producing synthetic diamond for experimental and industrial purposes since the 1980s. Although De Beers has historically only sold natural diamonds for use in jewelry, in 2018 they surprised the gem and jewelry industry by breaking that tradition. In September 2018 they began selling a collection of synthetic diamond jewelry under the Lightbox trademark. They distinguished their products from natural diamonds by calling then lab-grown diamonds.

Lightbox Jewelry features pink, blue, and colorless lab-grown diamonds for the previously unheard-of price of $800 per carat. These are all sold without grading or laboratory reports. They do not have the lab-grown diamonds graded for two reasons: 1) to minimize the cost of the product; and, 2) they do not believe that lab-grown diamonds require grading. The goal is to sell them inexpensively for any occasion and for everyday wear.

At a price of only $800 per carat, almost anyone who wants a colored lab-grown diamond can afford one. Customers can purchase lab-grown blue or pink diamond solitaire stud earrings starting at $400 per pair. For $400, each earring contains a 1/4-carat lab-grown diamond set in 10-karat white gold.

In May, 2019, Stephen Lussier, a De Beers executive, reported that Lightbox's early sales have been mostly their pink and blue products. The company believes that this is happening because the buyers want "color". They are also selling all of the Lightbox jewelry that they have the ability to produce and expect that to be the case until their new factory in Gresham, Oregon begins production in 2020. It will have a capacity of about 500,000 rough carats per year. [13]

Mr. Lussier was asked if Lightbox was "cannibalizing the lower end of the diamond market". His reply was "Not significantly. We are selling in a category where it’s competing largely with non-diamond jewelry... [We] are actually in a different market segment from a diamond perspective, and there is minimal cannibalization. It will affect some of the semiprecious, the low-end colored stones. But at the end of the market it’s mostly color." [13]

More Diamonds
  Colored Diamonds
  World*s Largest Diamonds
  Diamonds Do Not Form From Coal
  Blood Diamonds
  US Diamond Mines
  Green Diamonds

geology store

Find Other Topics on Geology.com:

Rocks: Galleries of igneous, sedimentary and metamorphic rock photos with descriptions.
Minerals: Information about ore minerals, gem materials and rock-forming minerals.
Volcanoes: Articles about volcanoes, volcanic hazards and eruptions past and present.
Gemstones: Colorful images and articles about diamonds and colored stones.
General Geology
General Geology: Articles about geysers, maars, deltas, rifts, salt domes, water, and much more!
Geology Store
Geology Store: Hammers, field bags, hand lenses, maps, books, hardness picks, gold pans.
Earth Science Records
Earth Science Records: Highest mountain, deepest lake, biggest tsunami and more.
Diamonds: Learn about the properties of diamond, its many uses, and diamond discoveries.